Skip to content

Quick Start

This documentation gives a quick start guide for running Spark/Flink/MapReduce with Apache Celeborn™.

Download Celeborn

Download the latest Celeborn binary from the Downloading Page. Decompress the binary and set $CELEBORN_HOME.

tar -C <DST_DIR> -zxvf apache-celeborn-<VERSION>-bin.tgz
export CELEBORN_HOME=<Decompressed path>

Configure Logging and Storage

Configure Logging

cd $CELEBORN_HOME/conf
cp log4j2.xml.template log4j2.xml

Configure Storage

Configure the directory to store shuffle data, for example $CELEBORN_HOME/shuffle.

cd $CELEBORN_HOME/conf
echo "celeborn.worker.storage.dirs=$CELEBORN_HOME/shuffle" > celeborn-defaults.conf

Start Celeborn Service

Start Master

cd $CELEBORN_HOME
./sbin/start-master.sh
You should see Master's ip:port in the log:
INFO [main] NettyRpcEnvFactory: Starting RPC Server [Master] on 192.168.2.109:9097 with advertised endpoint 192.168.2.109:9097

Start Worker

Use the Master's IP and Port to start Worker:

cd $CELEBORN_HOME
./sbin/start-worker.sh celeborn://<Master IP>:<Master Port>
You should see the following message in Worker's log:
INFO [main] MasterClient: connect to master 192.168.2.109:9097.
INFO [main] Worker: Register worker successfully.
INFO [main] Worker: Worker started.
And also the following message in Master's log:
INFO [dispatcher-event-loop-9] Master: Registered worker
Host: 192.168.2.109
RpcPort: 57806
PushPort: 57807
FetchPort: 57809
ReplicatePort: 57808
SlotsUsed: 0
LastHeartbeat: 0
HeartbeatElapsedSeconds: xxx
Disks:
  DiskInfo0: xxx
UserResourceConsumption: empty
WorkerRef: null

Start Spark with Celeborn

Copy Celeborn Client to Spark's jars

Celeborn release binary contains clients for Spark 2.x and Spark 3.x, copy the corresponding client jar into Spark's jars/ directory:

cp $CELEBORN_HOME/spark/celeborn-client-spark-<spark.major.version>-shaded_<scala.binary.version>-<celeborn.version>.jar $SPARK_HOME/jars/

Start spark-shell

Set spark.shuffle.manager to Celeborn's ShuffleManager, and turn off spark.shuffle.service.enabled:

cd $SPARK_HOME

./bin/spark-shell \
--conf spark.shuffle.manager=org.apache.spark.shuffle.celeborn.SparkShuffleManager \
--conf spark.shuffle.service.enabled=false
Then run the following test case:
spark.sparkContext
  .parallelize(1 to 10, 10)
  .flatMap(_ => (1 to 100).iterator.map(num => num))
  .repartition(10)
  .count
During the Spark Job, you should see the following message in Celeborn Master's log:
Master: Offer slots successfully for 10 reducers of local-1690000152711-0 on 1 workers.
And the following message in Celeborn Worker's log:
INFO [dispatcher-event-loop-9] Controller: Reserved 10 primary location and 0 replica location for local-1690000152711-0
INFO [dispatcher-event-loop-8] Controller: Start commitFiles for local-1690000152711-0
INFO [async-reply] Controller: CommitFiles for local-1690000152711-0 success with 10 committed primary partitions, 0 empty primary partitions , 0 failed primary partitions, 0 committed replica partitions, 0 empty replica partitions , 0 failed replica partitions.

Important: Only Flink batch jobs are supported for now.

Celeborn release binary contains clients for Flink 1.16.x, Flink 1.17.x, Flink 1.18.x, Flink 1.19.x and Flink 1.20.x, copy the corresponding client jar into Flink's lib/ directory:

cp $CELEBORN_HOME/flink/celeborn-client-flink-<flink.version>-shaded_<scala.binary.version>-<celeborn.version>.jar $FLINK_HOME/lib/

Set shuffle-service-factory.class to Celeborn's ShuffleServiceFactory in Flink configuration file:

  • Flink 1.16.x, Flink 1.17.x, Flink 1.18.x

    cd $FLINK_HOME
    vi conf/flink-conf.yaml
    

  • Flink 1.19.x, Flink 1.20.x

    cd $FLINK_HOME
    vi conf/config.yaml
    

Choose one of flink integration strategies and add the following configuration:

(Support Flink 1.16 and above versions) Flink Remote Shuffle Service Config

shuffle-service-factory.class: org.apache.celeborn.plugin.flink.RemoteShuffleServiceFactory
execution.batch-shuffle-mode: ALL_EXCHANGES_BLOCKING
Note: The config option execution.batch-shuffle-mode should configure as ALL_EXCHANGES_BLOCKING.

(Support Flink 1.20 and above versions) Flink hybrid shuffle Config

shuffle-service-factory.class: org.apache.flink.runtime.io.network.NettyShuffleServiceFactory
taskmanager.network.hybrid-shuffle.external-remote-tier-factory.class: org.apache.celeborn.plugin.flink.tiered.CelebornTierFactory
execution.batch-shuffle-mode: ALL_EXCHANGES_HYBRID_FULL
jobmanager.partition.hybrid.partition-data-consume-constraint: ALL_PRODUCERS_FINISHED
Note: The config option execution.batch-shuffle-mode should configure as ALL_EXCHANGES_HYBRID_FULL.

Then deploy the example word count job to the running cluster:

cd $FLINK_HOME

./bin/flink run examples/streaming/WordCount.jar --execution-mode BATCH
During the Flink Job, you should see the following message in Celeborn Master's log:
Master: Offer slots successfully for 1 reducers of local-1690000152711-0 on 1 workers.
And the following message in Celeborn Worker's log:
INFO [dispatcher-event-loop-4] Controller: Reserved 1 primary location and 0 replica location for local-1690000152711-0
INFO [dispatcher-event-loop-3] Controller: Start commitFiles for local-1690000152711-0
INFO [async-reply] Controller: CommitFiles for local-1690000152711-0 success with 1 committed primary partitions, 0 empty primary partitions , 0 failed primary partitions, 0 committed replica partitions, 0 empty replica partitions , 0 failed replica partitions.

Start MapReduce With Celeborn

Copy Celeborn Client to MapReduce's classpath

  1. Copy $CELEBORN_HOME/mr/*.jar into mapreduce.application.classpath and yarn.application.classpath.
    cp $CELEBORN_HOME/mr/celeborn-client-mr-shaded_<scala.binary.version>-<celeborn.version>.jar <mapreduce.application.classpath>
    cp $CELEBORN_HOME/mr/celeborn-client-mr-shaded_<scala.binary.version>-<celeborn.version>.jar <yarn.application.classpath>
    
  2. Restart your yarn cluster.

Add Celeborn configuration to MapReduce's conf

  • Modify configurations in ${HADOOP_CONF_DIR}/yarn-site.xml.
    <configuration>
        <property>
            <name>yarn.app.mapreduce.am.job.recovery.enable</name>
            <value>false</value>
        </property>
    
        <property>
            <name>yarn.app.mapreduce.am.command-opts</name>
            <!-- Append 'org.apache.celeborn.mapreduce.v2.app.MRAppMasterWithCeleborn' to this setting  -->
            <value>org.apache.celeborn.mapreduce.v2.app.MRAppMasterWithCeleborn</value>
        </property>
    </configuration>
    
  • Modify configurations in ${HADOOP_CONF_DIR}/mapred-site.xml.
    <configuration>
        <property>
            <name>mapreduce.job.reduce.slowstart.completedmaps</name>
            <value>1</value>
        </property>
        <property>
            <name>mapreduce.celeborn.master.endpoints</name>
            <!-- Replace placeholder to the real master address       -->
            <value>placeholder</value>
        </property>
        <property>
            <name>mapreduce.job.map.output.collector.class</name>
            <value>org.apache.hadoop.mapred.CelebornMapOutputCollector</value>
        </property>
        <property>
            <name>mapreduce.job.reduce.shuffle.consumer.plugin.class</name>
            <value>org.apache.hadoop.mapreduce.task.reduce.CelebornShuffleConsumer</value>
        </property>
    </configuration>
    
    Note: MRAppMasterWithCeleborn supports setting mapreduce.celeborn.master.endpoints via environment variable CELEBORN_MASTER_ENDPOINTS. Meanwhile, MRAppMasterWithCeleborn disables yarn.app.mapreduce.am.job.recovery.enable and sets mapreduce.job.reduce.slowstart.completedmaps to 1 by default.

Then deploy the example word count to the running cluster for verifying whether above configurations are correct.

cd $HADOOP_HOME

./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.1.jar wordcount /someinput /someoutput
During the MapReduce Job, you should see the following message in Celeborn Master's log:
Master: Offer slots successfully for 1 reducers of application_1694674023293_0003-0 on 1 workers.
And the following message in Celeborn Worker's log:
INFO [dispatcher-event-loop-4] Controller: Reserved 1 primary location and 0 replica location for application_1694674023293_0003-0
INFO [dispatcher-event-loop-3] Controller: Start commitFiles for application_1694674023293_0003-0
INFO [async-reply] Controller: CommitFiles for application_1694674023293_0003-0 success with 1 committed primary partitions, 0 empty primary partitions , 0 failed primary partitions, 0 committed replica partitions, 0 empty replica partitions , 0 failed replica partitions.